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Abstract-Characteristic equation for the stress singularities of the form r;"1, 0 < Re [/.] < I, for
an inclined crack terminating at an interface between two anisotropic media is derived. Explicit
dependence of i, on the material parameters is further carried out for materials, both having
properties of orthotropy, Characteristic equation corresponding to any degenerate bimaterial prob­
lem is obtainable from present results, Numerical results of i. are presented for certain kinds of
bimaterial problems, and the influences of the material parameters, the meeting angles and the
material alignments on i. are examined. The role of the parameter {io playing in the oscillatory
behavior is also discussed. 1997 Elsevier Science Ltd.

I. INTRODUCTION

Analysis of stress singularities of an inclined crack terminating at an interface between two
isotropic materials has been investigated by Bogy (1971), Very detailed investigations of
the dependence of the stress singularities on the Dundurs' constants CJ. and Pwere given,
The special case of crack terminating normally at the interface has been treated very early
by Zak and Williams (1963) and later on by Cook and Erdogan (1972), Erdogan and
Biricikoglu (1973), All these studies are focused on isotropic bimaterials, Singularities of
cracks normally terminating at an interface between two aligned orthotropic materials have
been studied by Delale and Erdogan (1979), and Gupta et al. (1992), Only the deformation
for symmetric mode is considered by them, Hence, only one real root is found for the power
of singularities ;. for most of the material combinations chosen in their studies, Ting and
Hoang (1984) investigated their problems (Delale and Erdogan (1979), and Gupta et al.
(1992)) but with materials both having the properties of general anisotropy. Orientation of
the crack relative to the interface remains normal in the analysis, Recently, Sung and Liou
(1996) have also investigated the problem similar to that considered by Ting and Hoang
(1984). A more convenient characteristic equation has been set up from the consideration
of the singular behaviors of a system of singular integral equations. In terms of Krenk's
parameters some features of the characteristic roots related to orthotropic bimaterials are
further explored (Sung and Liou, 1996).

In the present analysis, characteristic equation for singularities i., 0 < Re p.] < I, of
an inclined crack terminating at an anisotropic interface is derived. The method used by
Wu and Chang (1993) in the analysis of a wedge problem interacting with singularities is
essentially followed. Characteristic equation corresponding to the special case treated by
Sung and Liou (1996) is recovered from the present result by letter <p = ni2, the meeting
angle of the inclined crack relative to the interface. Following that paper (Sung and Liou,
1996), a special kind of alignments of orthotropic materials on both sides of the interface
is then considered. The explicit form of the characteristic equation expressed in terms of
material parameters is obtained, Characteristic equations corresponding to any degenerate
bimaterial problem are obtainable from present results through the appropriate limiting
process, When crack meets the interface at rp = 0 or n, i.e., an interfacial crack problem,
the oscillatory index G is found to depend on four generalized Dundurs' constants, PI' Pl,
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}." and I-b only, and is independent of the rest of the generalized Dundurs' constants, e.(1

and Cl.2' The oscillatory index will vanish if /31 = /32 = 0 (or /30 = 0). Numerical results of the
roots }, are first presented for the problem of an isotropic material joined to an orthotropic
material for different meeting angles. The parameters Cl.o and /30, which reduced, respectively,
to Dundurs' constants CI. and /3 for two isotropic materials, are focused on in the studies of
singular natures and the role of Cl.o in the measure of dissimilarity of two materials is
discussed. Next the problem of a mismatch problem, composed by two but the same
orthotropic materials, is analyzed. The effect of mismatch angle on the roots Ie is inves­
tigated. Material parameter K is found to have little influence on the magnitudes of the
singularity for mismatch problem. Finally, a real graphite--epoxy composite where a crack
is embedded in either one of the materials is analyzed. From numerical investigations, the
role parameter /30 possibly played in the oscillatory behavior for bimaterials is discussed.

2. STROH FORMALISM

A two-dimensional deformation of a linear elastic solid whose field quantities are only
functions of Xl and X2 is considered. The general expressions for the displacement u and
stress function <jJ for such a deformation are (Eshelby et at. (1953), Stroh (1958))

where Re { } denotes real part,

u = 2 Re {Af(z)}

<jJ = 2 Re {Bf(z)}

(1)

(2)

(3)

with Zk = Xl +PkX2, (k = 1,2,3). Superscript T represents transpose. Matrix A with com­
ponents denoted by akj and constants Pk are determined from the following eigenvalue
problem

(4)

where ('Ukl are the elastic constants. Without loss of generality, one may take the imaginary
part ofPk to be positive. Matrix B in eqn (2) is defined by

B = RTA+TAP (5)

where

R ik = ('ilk2 (6)

Tik = ('i2k2 (7)

and P = diag (P"P2,P3)' (For a more detailed description of the function fez) and the
physical meaning of matrices A and B, please refer to the paper by, e.g., Ting (1986.))
Stress function <jJ is related to the stress components by

(8)

(9)
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where

A more general expression (see, e.g. Ting, 1986)
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(10)

can be established where s is the arc length and n the unit outward normal vector. Matrices
A and B satisfy the following orthogonality relations (Stroh (1958), Chadwick and Smith
(1977»:

(11 )

where I is a 3 x 3 unit matrix and a bar over a quantity represents the conjugate of that
quantity.

3. CHARACTERISTIC EQUAnON FOR ANISOTROPIC BIMATERIALS

In this section, we will develop the characteristic equation for an inclined crack
terminating at the interface between two anisotropic media. We follow the approach
developed by Wu and Chang (1993) to select the vector functions fez) so that the traction­
free conditions on the crack faces are automatically satisfied. Hence, the remaining con­
ditions to be enforced for setting up the characteristic equation are the continuity conditions
of the displacements and stresses on the interface which will make the derivation of the
characteristic equation easier. The functions fez) defined in eqn (1) in three regions (as
shown in Fig. 1) are selected as

(12.a)

(12.b)

(12.c)

where e[/J, e~l], e 12] and e[3j are unknown complex constants, q[l], ql21 and q[3] are complex
vectors to be determined, f is a characteristic length scale and N!) and N 2

) are given as
follows:

(13.a)
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Fig. 1. An inclined crack terminating at an anisotropic interface.

where

(13.b)

(13.c)

Bracketed superscript [i] represents the region's number (i = 1,2,3) while a superscript
with parentheses (ex) denotes the material's number (IX = 1,2). Substituting eqns (12.a, b., c)
and (l3.a, b) into eqns (1), (2) and (10), the corresponding displacements, stress functions
and tractions in three regions are given by

U[I] = Re { GY [c\ IJh\IJ(e, 2n - cp,)) + c~11h~IJ(0, - cp, ;.)]}

¢[Il = Re {GY [d1]g\IJ (0, 2n - cp, ),) + C~l]g~l] (0, - cp, ))]}

(14.a)

(l4.b)



where
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u[3] = Re {c[3] GYh[3](8, - <p, A) }

etP] = Re {C[3] GJ g[3] (8, - <p, A) }
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(I4.c)

(15.a)

(15.b)

(I5.c)

(I6.a)

(16.b)

(I6.c)

h[ll] (8, 2n - <p, A) = (A(l)N I )(8, 2n- <p, }.) + A(I) A(I)(8, 2n- <p, X))q[ll]

g~IJ(8, 2n - <p, A) = (B(l) N l)(8, 2n - <p)) + B(I) A(I)(8, 2n- <p, X))q[i]

h~IJ(8, -<p,A) = (A(I)A(I)(8, -<p,A)+A(I)N I )(8, _<p,X))q~I)

g~I](8, -<p,).) = (B(l)N1)(8, -<p,A)+B(I)A(I)(8, -<p,J.))q~1]

h[2](8, 2n - <p, A) = (A(2) A(2)(8, 2n - <p, A) + A(2) N 2)(8, 2n- <p, ;:))q[2]

g[2](8, 2n- <p, ;.) = (B(2) N2)(8, 2n- <p,}.) + B(2)A(2)(8, 2n - <p, X))q[2]

h[3 J(8, _<p,),) = (A(2)A(2)(8, -<p,).)+A(2)N2)(8, _<p,J.))q[3 J

g[3](8, -<p,A) = (B(2)N2)(8, -<p,;,) +B(2)A(2) (8, -<p,A))q[3]. (17)

It is seen from eqns (I5.c) and (I6.c) that the vanishing tractions on the planes 8 = 2n-<p
and 8 = - <p are both satisfied. There remains the continuity conditions of tractions and
displacements along the interfaces (i.e., 8 = 0 and 8 = n) that have to be satisfied. Therefore,
enforcing these continuity conditions, one obtains the following expressions:

Re {[A(I) A(I)(n, 2n - <p, A) + A(l) A(I)(n, 2n- <p, J)]<W]

+ [A(l) A(I)(n, - <p, A) + A(I)A(I) (n, - <p, X)]q~l]}

= Re ([A(2) N 2) (n, 2n - <p, A) + A(2) A(2) (n, 2n - <p, A)]q[2]}

Re ([B(I)A(I) (n, 2n- <p, ;,) + B(I)Nl) (n, 2n - <p, J.)]4l1l]

+ [B(I)A(I)(n, -<p,A)+B(I)A(I)(n, _<p,A)]q~ll}

= Re {[B(2)N 2)(n, 2n- <p, ),) + B(2) A(2)(n, 2n - <p, J)]q[2)}

Re ([A(I) A(1)(0, 2n - <p, A) + A(I) A(I)(O, 2n- <p, J)]q~l]

(I8.a)

(I8.b)
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+ [A(I)N1)(0, -cp,A)+A(I)N1)(0, -cp,J)]cW]}

= Re ([Af2)1\(2) (0, -cp, A) + A(2) 1\(2) (0, _cp,J.)]q[3]}

Re {[B( I) N I ) (0, 2n - cp, A) + B(I)1\(I) (0, 2n - cp, J.)]q\l]

+ [B(I)1\(I) (0, -cp, ).) +B(I)NI)(O, -cp, A)]q~IJ}

= Re ([B(2)N 2 ) (0, - cp, I.) + B(2)N 2 ) (0, _ cp):)]q[3J}

(18.c)

(1S.d)

where q[i] = C\l]q[lll, q~1] = C~I]q~I], q[2] = C[2lq[21and q[3] = C[3Iq[3J. Since the values of function
1\(1) (or 1\(2)) at e= 0 and e= n are equal, only two of the above equations need to be
considered. For example, take eqns (I8.a) and (18.b) for further consideration. Using
results ofeqn (11), these two equations can be rewritten as

1\(I) (n, 2n - cp, ).)q[1] = [(B(I)TA(2) + A(,)TB(2))N2) (n, 2n - cp, A)

+ (B(I)TA(2) + A(1)TB(2))N 2)(n, 2n - cp, 2)]q[2] (19.a)

1\(I)(n, 2n-cp, }.)q[l] = [(B(I)TA(2) +A(I)TB(2»)1\(2)(n, 2n-cp, ).)

+ (B(I)T A(2) + A(I)TB(2))N2)(n, 2n- cp, A)]q[2J (19.b)

where q[1] = q\'] +q~1]. Substituting NI) and N2) into these two equations, one obtains:

_e-i;rrI - B(2)«(2)( - cp)); )B(W 1M 22 W2)<(_ (2)( - cp))-.<) B(2)-1 ]

B(2) <(((2)( _ cp)).<) B(2)--1 M22 B(2)< ( _ ((2)( _ cp)) -)B(W' +ei.<rrI

where

(21)

and

(22)

(23)

For nontrivial solutions of q[1] and q[21 of eqn (20), one leads to the following characteristic
equation:

where

det[cos(nA)I+Q(A)] = 0, 0 < Re {A} < I (24)

(25)
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(26)

Apparently, if A is a root of eqn (24), then Jc is also a root of that equation. It is noted that
when the crack terminates normally at the interface, i.e., when q> = 90°, eqn (24) reduces
to that obtained by Sung and Liou (1996). Also note that for the special cases when q> = 0°
or rr, quantity Q(A) defined in eqn (25) becomes

Hence, the characteristic roots t. for the interfacial crack problem are

. I .1 1+f3
A =- +1-ln-­

2 - 2rr 1- f3

where f3 = [-~tr(WD-I)2]1!2 and D = Re(F) and W = Im(F) (Ting (1986)).

4. SINGULARITIES FOR ORTHOTROPIC BIMATERIALS

(27)

(28)

Characteristic eqn (24) derived in the previous section is usually in complex form,
provided that media on both sides of the interface are generally anisotropic. Hence, it is
usually difficult to investigate the general features of the characteristic roots for such
anisotropic media. We will in the following focus on materials composed by orthotropic
media for which the characteristic equation can be expressed in terms of material constants
in an explicit form.

The problem considered is sketched in Fig. I where the principal axes of material #2
are aligned along the coordinate axes while those of material #1 can have an arbitrary angle
)' relative to the interface boundary. Since both of the materials' principal axes in the out­
of-plane direction are assumed to be parallel with the xraxis, the anti-plane deformation
will be decoupled from the in-plane deformation. Hence, the anti-plane deformation is
ignored in the following. Due to this fact, the size of all matrices and vectors previously
defined and appearing in what follows will be 2 x 2 and 2 x I, respectively. As has been
discussed in the paper (Sung and Liou, 1996), the matrix Ef) and quantity pi2) appearing
in (25) can be expressed in terms of two Krenk's parameters, 6(2) and K(2) (Krenk, 1979;
Sung and Liou, 1996) as follows

I [W~)+w<;) i6(2) ]
K(2) > I

2w~) i6(W' w~) -w<;) ,
E(2)-1 -

_1_ [w~) - iw<;) 6(2)

W~)+iW<;)], IK(2)1 < I
2w~) 6(2)-1

I [W~) -w<;) - i6(2) ]
K(2) > I

2w~) -i6(2)-1 w~) +w<;) ,
E(2)- (29)2 -

_1_ [W~)+ iw<;)
_6(2)

W(2) - iW(2) ],
IK(2)1 < I

2w~) _6(2)-1
- +

f6(2)(W(2) +w~»). K(2) > I
(2) + .

PI' =
IK(2)1 < I6(2) (iw<;J - W(2»),
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where

(30)

(31)

Matrix M 22 in (21) can also be expressed in terms of six generalized Dundurs' constants as
(Sung and Liou, 1996)

(A I -iPd (1+1X 2)].

1X 2 +13[132 +A[A2
(32)

The six generalized Dundurs' constants are defined as

(1 +1(0 ) - d ~ - [

[;(2) 2130

(5(2) d**

where

(33)

and

w~) w~)
----
E(2) E(l)

1X 0 =
w(2) W(I)
~+~+-+

E(2) E(l)

I-V(2) I-v(l)
-----

E(2) E(l)

Po = (2) ([»)
2

w+ w+-+­
E(2) E(l)

(34.a)

d = (1-1X0) ~ -I (1 +sin2 (y)«(5(l)2 -I))

d* = (1-1X0) ~(l +sin2 (y)«(5(W
2
-I))

d** = (1-1X0) sine}') cos(})([;(l) _[;(1)-1)

~ = [;(l) /[;(2) . (34.b)

Material parameters EX) and v(x) appearing above are the other two Krenk's parameters.
These four Krenk's parameters EX), v(X), (5(x), and K(x) are related to engineering elastic
constants. For details please refer to the paper by Krenk (1979). For isotropic materials,
Krenk's parameters take the following special values:

v(X) = v~x) /(1- v~x)) (plane strain case) (35)
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where m» is the Young's modulus and vj') is the Poisson ratio of the isotropic material
(subscript i is not a free index here). The six generalized Dundurs' constants will become,
for isotropic material,

(36)

where :xo and fJo are reduced, respectively, to the Dundurs' constants CJ. and fJ (1968).
Substituting results of (29), (30) and (32) into (25), one can obtain the explicit

expressions for the elements of Q for orthotropic bimaterials which are shown in
Appendix A. By letting qJ = n/2, the explicit forms of the elements of Q(),) shown in
Appendix A are reduced to those developed by Sung and Liou (1996). Also note that when
6(1) = I, the generalized Dundurs' constants defined by eqn (33) are all independent of y
(i.e., independent of the alignments of the upper material's principal axes), and moreover,
y appears nowhere in other quantities, therefore all elements ofmatrix Q will be independent
ofy. This implies that the alignments of material #1 will have no effect on the characteristic
roots A when material #1 has the special property that 6(1) = I. Such phenomena has also
been observed by Sung and Liou (1996). Let us now consider the interfacial crack problem,
i.e., qJ = 0 or n. For these cases, one can easily show that elements of Q are:

Q(I, I) = NIl cos(An)

Q(2,2) = N 22 cos().n)

Q(I,2) = 6(2) (N 12 sin(An) +N I2 cos(An))

Q(2, 1) = 6(2)-I(N21 sin(),n)+N21 cos(h)). (37)

Hence, with the definition ofN12, N2 ), and Nij expressed in (A-3), the characteristic equation
becomes

Therefore,

where oscillatory index [; is given by

, 1+.
J. = 2-/[; (39)

(40)

It is seen that, for the orthotropic bimaterial problem, [; is determined only by parameters
fJ), fJ2, ;.] and )'2' It is not related tO:X1 and:X2 at all. When material #1 is aligned, i.e., y = 0°,
[; will be determined only by two generalized Dundurs' constants, fJl and fJ2 (since AI = A2 = 0
when y = 0°). When material #1 has the special property that 6(1) = I then, even though
y i= 0), [; will be also related to fJI and fJ2 only (since Al = A2 = 0 when 6(1) = 1). When both
materials are isotropic, then parameters in eqn (40) are fJI = fJ2 = fJ and )'1 = }'2 = O. Hence,
the oscillatory index [; becomes the well known result:

(41)

It is interesting to consider the conditions for which the oscillatory behavior will disappear.
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From eqn (40), we see that these conditions are PI = 0 or P2 = O. According to the definition
of generalized Dundurs' constants (see eqn (33)), these two conditions are equivalent to

or, from eqn (34.a), to

Po = 0 (42)

(43)

Note that the condition of Po = 0 implies W == O. The vanishing of W for the absence of
oscillating behavior for general anisotropic interfacial problems has been observed by Qu
and Bassani (1993). Here we give the conditions for orthotropic media in terms of material
parameter Po.

For the degenerate materials, the present form of matrix Q expressed in Appendix A
can not be directly employed since the denominators of the elements of Q contain the term
of (1- K(2)) which will vanish when material #2 becomes degenerate, i.e., K(2) = I. However,
through the L'Hospital rule, the explicit expressions for the elements ofQ are also available
which are listed in Appendix B. They are valid as long as K(2) = I. Many other degenerate
cases can be further studied from these results. For instance, letting 6(2) = I in those
expressions shown in Appendix B, then the results can be employed to study the singular:ities
of an isotropic medium joined to an orthotropic medium. By letting 6(1) = K(l) = I and
6(2) = I, then the problem which has been studied by Bogy (1971) becomes two isotropic
materials with different properties joined together. The characteristic equation set up by
Bogy (1971) can be recovered from our expressions, just noting that

(44)

when 6(1) = K(I) = I and 6(2) = K(2) = I and substituting these values into eqns (B-I)~(B-4),

one can reach the results obtained by Bogy.

5. SOME NUMERICAL RESULTS AND DISCUSSIONS

In this section, the singularities of several kinds of material compositions are analyzed.
First we consider the problem of an isotropic medium joined to an orthotropic medium,
then the mismatch problem is focused. Finally, a graphite--epoxy composite is considered.

(I) An isotropic medium joined to an orthotropic medium.

We consider first the case of y = 0° which occurred frequently in engineering appli­
cations. It is noted that quantities N12 , N21 and Nkj (k,j = 1,2) defined in eqn (A-3) depend
on parameters Lio, Po and f1 only when }' = Oc. Therefore, the explicit dependence of the
roots A. on the material parameters becomes simpler. For an isotropic medium (#2) joined
to an orthotropic medium (#1), one can further let 6(2) = K(2) = 1. Hence, the dependence
of the roots ), on the material parameters becomes

(45)

Only three material parameters Lio, Po and f1 (= 6(1)) will enter into following discusslons.
As has been discussed in the paper by Sung and Liou (1996), the possible values of Lie and
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Po fall in a region enclosed by a quadrilateral in a lXo-Pu diagram. The ranges of 1X0 and Pu
are -1 ~ :Xo ~ I and (-1/2w~») ~ Po ~ (1/2w~»), respectively, if the nonnegative values
of Vi') are assumed.

Taking that assumption for granted and taking Po = m:Xo(l:Xol ~ I) for the present
analysis where m = 0 or 0.25, Fig. 2a--c present the roots I. vs :xo for cp = n/6, n/4 and n/3,
respectively, for m = 0, while those in Fig. 3a--c are the results of ;. for m = 0.25. In each
figure, several values of ~ are chosen for analysis. It is observed from Fig. 2a--c that for
each ~ there corresponds to two real roots for l:Xol < I except at the point (1X0, Po) = (0, 0)
with ~ = I where only one real root is observed. At this special value of material combi­
nations, i.e., (:Xo, Po) = (0, 0) and fl = I, the elements of Q are

Q(1, I) = Q(2,2) = Q(I,2) = Q(2, I) = O. (46)

Hence, only one real root ;, = 1/2 is obtained. As 1X0 approaches I, the roots are found to
be independent of fl while as lXo approaches - 1, all roots become I. = 0 which are again
independent of fl. These phenomena which can be verified directly from the characteristic
equation given by eqn (24) have also been observed in the investigations of a crack
terminating normally at the interface (Sung and Liou, 1996). Complex roots appearing in
complex conjugate form are observed for certain values of:xo as shown in Fig. 3a and 3b
with Po = 0.25c>:0. The phenomena of ;. previously noted at two extremities of:xo, i.e.,
:Xo = - 1 and 1X0 = I, are also observed for the case of f30 = 0.25C>(1). It should be mentioned
that those results corresponding to fl = 1 plotted in Fig. 2 and Fig. 3 are applicable for
isotropic bimaterial problems if their properties characterized by Dundurs' constants are
such that IX = IXI) and f3 = f30.

lt is noted that for isotropic bimaterial problems, parameters IXI) and f30 reduce to
Dundurs' constantsc>: and f3, respectively. These two parameters are the measure of the
elastic dissimilarity of two isotropic materials. Parameter IX can be further interpreted as a
measure of the dissimilarity in stiffness of the two materials, which has been noted by Suo
(1989). When :x > 0, the material #1 is stiffer than #2 while has IX < 0 the material #1 is
relatively compliant. However, for orthotropic bimaterial problems the behaviors at the
interface are strongly influenced by material alignments. To select a parameter (or par­
ameters) to characterize which material is stiffer is more complicated. The parameter :Xlb

which reduces to c>: for two isotropic materials, will be a guess to be a candidate in the
measure of the dissimilarity. Our results shown in Fig. 2 show that the values of I. increase
as :Xo runs from - I to I. This more or less implies that parameter 1X0, defined for two
orthotropic materials, does playa similar role as IX does for isotropic materials. However,
there are cases that as 1X0 increases the value of ), will decrease, as shown in Fig. 3a and b.
These observations reflect that the role of parameter 1X0 played in two orthotropic materials
is not the same as IX played in isotropic materials. Let's further consider the simplest case of
a mismatch problem, i.e., the problem composed by materials having the same orthotropic
properties joined together at the interface boundary with one of the material's principal
axes having an angle r relative to the interface. For such a problem, it is clear that to select
a parameter to measure the dissimilarity in stiffness of the same materials seems meaningless.

For the comparisons of the magnitudes of }, for different meeting angles, we make
another two plots shown in Fig. 4a and b for the case of f30 = 0.0. Also plotted in these
figures are the results of cp = n/2 which have been discussed by Sung and Liou (1996). Only
one real root will occur for the case of cp = n/2 for all values ofc>:o with fl = I. For meeting
angles other than cp = n/2, it is seen from Fig. 4(a) that their corresponding dominant
singular terms are always higher than those for cp = n/2 for all values of lXo (except at
1X0 = 0.0) for the case of fl = 1. However, for the case of ~ = 2 (Fig. 4(b)), their cor­
responding dominant singular terms may be smaller than those for cp = n/2.

The above studies are all for the case of}' = O. From numerical studies we observed
that as long as r = 0 and f31) = 0 characteristic roots I. seem to be always real for all cp
(0 ~ cp ~ n/2). However, if f30 =1= 0, then complex roots may exist. This observation of ), to
be a real value, i.e., the oscillatory behavior at the tip will disappear, will be further noted
in the later discussions.
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Having discussed the problem of material #1 being properly aligned i.e., I = 0°, we
next present the effect of y where 0 ~ I ~ n/2. Properties of material #2 are still kept
isotropic, i.e., 15(2) = K(2) = 1. Only the case for which Po = 0 is selected for presentation. As
has been discussed previously, the effect of y on Ie will vanish when material #1 has the
special property that b(ll = 1. Hence, the selection of Li = b(l) /15(2) = 15(1) = 1 will have no
information about the effect of I'. We therefore take Li = 2 for presentations. Figure 5a-c
are the results of Ie vs I for qJ = n/6, n/4, and n/3, respectively. The usefulness of these
plottings is that for a given orthotropic material one can orient the material principal axes
so that the magnitude of the dominant singularity at the interface can be a minimum.
Observing these figures, we note that the case of 0(0 = 1.0 will produce constant A for all y.
This is because six generalized Dundurs' constants are all independent of y when 0(0 = 1.0.
It is also noted that complex roots are surely observed in Fig. 5c for certain values of y.
This implies that no guarantee of the absence of the oscillatory behavior when y 1= Dc or n
even though the parameter Po vanishes. One more thing to be mentioned is that, although
the results of ). for Li andLi -I are related to each other when qJ = n/2 (Sung and Liou,
1996), no such relations hold when qJ 1= n/2.

(II) Mismatch problem

For orthotropic bimaterial problems, the investigations of the effect of parameters 0(0

on Ie would have the same tendency as those previously discussed for the problem of an
isotropic material joined to an orthotropic material. Hence, instead of making such an
investigation, we focus on the mismatch problem which is composed by two orthotropic
materials both having the same properties, but with the material principal axes of #1 have
an angle y relative to the #2 at the interface boundary. For such a mismatch problem, the
constants 0(0 and Po will both vanish and the characteristic equation will depend on the four
Krenk's material parameters: K(I) = K(2l = K, b(l) = 15(2) = 15, v(l) = V(2) = v and
£<1) = £<2) = E. Since the influences of E and v are absorbed by the parameters 0(0 and Po,
therefore, only K and 15 need to be considered in the characteristic equation.
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Figure 6a-d present the results of A vs the mismatch angle y for different meeting
angles. The parameter 6 (6 = 2) is kept constant. It is seen that at y = 0 which corresponds
to homogeneous medium the magnitude of the singularity is 1/2, while as the mismatch
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angle y increases the most dominant singularity (= - 1+ A) is getting higher. Also observed
from these figures is that the effect of parameter K on A is small. Similar to those studies of
Fig. 6a-d, Fig. 7a~b are the results of Avs y but now we kept K constant (K = 2). Several ()
are selected in plotting these figures to see the effect of that parameter. It is observed that
as y increases the most dominant singularity will also increase. Also we note that the effect
of parameter b on Aare more profound than that of the parameter K. From above analyses
we see that as long as mismatch angle y exists the stress singularity for the present mismatch
problem will be higher than that for homogeneous medium. Also we observed from numeri­
cal studies that all the roots are real for mismatch problems.

(III) Orthotropic bimaterial problem

The last materials we selected for analysis in layers 1 and 2 are graphite--epoxy
composites, since it would be useful to have some information about real particular ortho­
tropic materials that are frequently occurred in engineering applications. For the purpose
of comparison, the elastic constants of the materials used by Wu and Erdogan (1993) are
adopted here. These constants in units of GPA are

Material 1 : E,x = 39.0, Ell = 6.4, E 1z = 30.6

G lXl = 4.5, G I1Z = 4.5, G lxz = 19.7

VII'X = 0.275, VIz.\' = 0.275, Vhz = 0.447

Material 2: E 2x = 30.6, E 21 = 6.4, E 2z = 39.0

G2Xl = 4.5, G2yz = 4.5, G2xz = 19.7

V2yx = 0.275, V2zy = 0.275, V2.c = 0.351

or, in terms of Krenk's parameters, they are
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Material 1 : (j( I) = 1.4656. Vi I) = 0.47633, Ell) = 21.533, K II ) = 1.9162

Material 2 : (j(2) = 1.3224, /2) = 0.58556, £(2\ = 20.758, K(2) = 1.7209.

Two cases are considered below. First we consider the problem of a crack lying in material
1 (called material pair B) and second, the crack lying in material 2 (called material pair A).
For material pair A the constants Q(() and f30 defined in eqn (34.01) are eto = - 9.908 X 10-4

,

f30 = 1.939 X 10- 2 while for material pair B the constants becomeeto = 9.908 x 10-4
,

f30 = - 1.939 X 10- 2
, respectively. Figure 8a-d are the results of A vs q> for y = 0, n/6, iT.j3

and nj2, respectively. Results of Wu and Erdogan (1993), who investigated only the case
of a crack terminating normally (q> = 90') for two aligned orthotropic materials (y = 0),
are also plotted in Fig. 801. It should be noted that there are two real roots correspond'ing
to each material pair for q> = n/2. Only one of them is presented by Wu and Erdogan
(1993). Comparing results for material A and material B, it is seen that the differences of i.
due to the crack embedded in either material 1 or material 2 are not so significant since the
present materials selected are such that materials I and 2 are the same except for a 90'
rotation about the y-axis. However, the effect of "I on the singularities is quite significant,
as can be seen from these figures.

(IV) Discussions

For the interfacial crack problem, i.e., when q> = 0 or n, we have shown that the
oscillatory behavior will disappear when f30 = 0 for orthotropic bimaterial problems. It is
curious then to ask what is the condition for an inclined crack (i.e., q> =1= 0 or n) to ensure
the real root always occurs? Our numerical results tend to show that parameter f30 seems to
play an important role. Let's first consider the isotropic bimaterial problems. In this case,
constants eto and f30 become et and f3, respectively. Let f3 = 0 in the characteristic equation
given by Bogy (1971). For such a special equation, analytic proving of the fact that it will
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always produce real roots Ie for a given meeting angle qJ for all possible physical values of
ex is still prohibited. However, Bogy (1971) has presented numerical results of Afor various
meeting angles, i.e., for qJ = 900, 11 0°, 135", 1600

, 175c
, 1800 and for various combinations

of bimaterials which are expressed in terms of Dundurs' constants ex and /3. All his results
are plotted in terms ofex-/3 diagram. Observing those figures presented by Bogy (1971), one
can find that roots are always real for all values of ex, lexl :::;; 1 (nonnegative of Poisson's
ratio is considered) whenever /3 = O. If complex roots occur, they occur only at /3 # O. These
findings are more or less consistent with our previous numerical observations. To get more
confidence from numerical points of view, many other computations have been carried out
for different material combinations for orthotropic bimaterial problems. All the results,
though not presented, show that if orthotropic materials on both sides of interface are
properly aligned (i.e., y = 0) then real roots Ie always occur for all meeting angles as long
as /30 = O. According to above discussions, we attempt to make such a statement that for
orthotropic bimaterial problems, /30 = 0 seems to be the condition of vanishing oscillatory
behaviors for a crack having an arbitrary meeting angle provided that both orthotropic
media are aligned. Surely this statement needs further confirmation.

6. CONCLUSIONS

A characteristic equation for the stress singularities J. has been derived for an inclined
crack terminating at an anisotropic interface. Explicit forms of this equation expressed in
terms of material parameters are then given for orthotropic bimaterial problems. Singu­
larities for several types of materials joined at the interface are analyzed and the effects of
the material parameters, the meeting angles and the material alignments on the roots are
also discussed in some detail. The part that parameter /30 played in the oscillatory behavior
is also noted. Whether the condition of fJo = 0 is sufficient to ensure real roots for any
meeting angles for two aligned orthotropic materials needs further investigations even
though present numerical results reveal this fact.
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APPENDIX A

The explicit expressions for the elements of Q for orthotropic bimaterials are, for I( > 1 :

Q(1, I) = (2w(2') -, {Nil [cos(A(n - 2rp, ))(1- 2W~2)d2)+ 2w(2)')

+cos(i.(n - 2rp,))(1 + 2w'!)w'~) + 2w(2") ~cos(A(n- rp, - rp,))(d + d - ')]

+ Ndcos(i.(n - 2rp,)) + cos(),(n - 2rp,)) -cos().(n - rp, - rp,))(d+ d- 1
)]

- Ndcos(i.(n - 2rp, ))(w'!) ~w'!))+cos(ic(n - 2rp,))(wS') +w(2»)

- cos(),(n - rp, - rp, ))(d(w':;'l + W(2)) + d '(o/~) - W(2»))]

- N" [cos(i.(n - 2rpl ))(w';) - W(2)) + cos(i.(n - 2rp,))(wS') + W(2»)

- cos(ic(n ~ rp, - rp,)) (d(W':;'l - W(2') +d-' (wS') +w"»))]

+ j'V\, [sin().(n- 2rp, ))(W(2) --oi!)) + sin(ic(n - 2rp,))(wS') + W(2I)

- sin(i.(n - rpl - rp,))(d(wS" + W(2')+ d -I (o/~) - W(2I))]

- Iii 21 [sin().(n - 2rp, ))(w'!) --w'!)) + sin().(n - 2rp, ))(wS') + w'~')

- sin().(n - rp, - rp, ))(d(w';' - w(')) + d -, (wS') + W(2»))]}

Q(2,2) = (2w" ») -, {Nil [cos(i.(n - 2rp I)) + cos(ic(n - 2rp,))

-cos(ic(n-rp, -'I',))(d.;..d- 1
)]

+cos(ic(n - 2rp,))( 1-2wS"w'" + 2w',')') -cos(ic(n - rp, - rp,))(d+ d- ')]

- N I , [cos(i.(n - 2rp I ))(wS" + w(2)) +cos().(n - 2rp,))(w(2' -W(2))

- cos()(n - rp, - rp,)) (d(w(2) +W(2)) +d- I (W(2) - o.,c~)))]

- N 21 [cos(i.(n - 2rpl ))(wS" + Wi!») +cos(}.(n - 2rp,))(w'!) - 0/'))

- cos()(n - rp, - rp, ))(d(w'}:l - w(~)) + d- 1 (w'}:) + W(2)))]

+ lli l , [sin().(n - 2rp, ))(w'!) +w'!)) + sin(A(n - 2rp,))(wS') - W(2')

~ sin(i.(n - rpl - rp,))(d(wS" + W(2') + d -I (wS') - W(2'))]

- Iii" [sin{ic(n - 2rp, ))(w'!' +W(2)) + sin(ic(n - 2rp,))(wS" - W(2I)

- sin(i.(n - rpl - rp,))(d(w~" - d") + d- , (w'}:' + W(2)))]}

Q(1,2) = (2w(2») -'<5(') {NI , [sin().(n - 2rp, ))(w'!) -w")) + sin().(n - 2rp,)) (d," + w'~')

- sin(}.(n - rp, - rp,))(d(wS" + w'~') +d I (wS') - w("))]

+ N" [sin(ic(n - 2rpl ))(wS" + W(2») + sin(i,(n - 2rp,))(w'}:) - W'2 ')

- sin().(n - rpl - rp2))(d(wS" + W(2') +d-' (w'}' - Wi')))]

+ N I , [ - sin(ic(n - 2rp l)) - sin().(n - 2'1',))

+sin(}.(n-rpl -rpJ)(d(1 + 2W'!\V(21 +2w(2") +d- I (1-2WS'}W'~' +2w'~"))]

- N'I [sin(ic(n - 2rp,)) + sin().(n ~ 2rp,)) - sin(ic(n - rpl - rp,))(d+ d- l)]

+1\\,[- cos(ic(n - 2rp l)) - cos(ic(n - 2rp,))

+ cos(ic(n- rp 1 - rp,))(d(l + 2W(2)W'2) + 2w(2)') + d-' (1 - 2w'.')W'2) + 2W'~"))]

+11;'1 [cos(ic(n - 2rp,)) +cos(ic(n - 2'1',)) -cos(l.(n - rpl - rpJ)(d+ d-
I
)]}
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Q(2, I) = (20J'':)-'b '2), {-Nil [sin(A(n-2G?I»(W',') -W(2)) +sin(A(n-2<p2))(w',') +W(2»)

~ sin(A(n - <PI - <p2))(d(w',') - W(2) + d- I (w';) + W(2)))]

- Ndsin(;.(n- 2<p, »)(W(2) +W(2) + sin(A(n - 2<P2»)(W':,') ~W(2))

-sin(l.(n - <PI ~ <p2))(d(w',') - W(2) + d- I (W',') +W(2))]

+ N I2 [sin(A(n - 2<p I» + sin(A(n - 2'P2» - sin(A(n - <P I - <P2»)(d+ d- ')]

+ N 21 [sin(A(n ~ 2<p I» + sin(A(n - 2<p2»

- sin(A(n - <PI - 'P2»)(d(l- 2W(2)W(2) + 2W(2)')+ d- l (I + 2W(2)W(2) + 2w(!)'))]

+ Ndcos(A(n - 2<pI)) +cos(l.(n- 2<p2)) -cos(.'.(n - <PI - <P2»(d+ d- I )]

- N 21 [cos(A(n - 2<pIl) + cos(A(n- 2<p,))

where

'P2 = tan- l (b(2)(W(2)+W(2I)tan<p) 0 ~ <P, ~ n

d = (vfcOS2
<P + (b

l:1
(W:) + w~)) sin <P )2);.

.Jcos2 <P + (b(~) (w';) - WI-)) sin <p)'

and N12, IV,J, N kj (k,j = 1,2) are defined as
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(AI)

(A-2)

':XI +fJlfJ2 +AI A2N I I = -,'--,'-:":'-::----c--'-:---"

1--fJlfJ, -AI A2

(I +:x,)fJlb'w'
N 12 = ,

l-fJ,fJ2 -A"'2

For results ofQ(A) for K(2) < I please refer to the thesis by Lin (1995).

APPENDIX B

(A-3)

The elements of matrix Q shown in Appendix A cannot be applied when material #2 is degenerated, i.e.,
K(') = I. Employing limiting process of L'Hospital rule, appropriate forms of the elements of matrix Q can be
obtained as

Q(I, I) = ( _b(2I' sin' <P -cos2 <p) -I { - N IIl2b(2) Asin <P cos <P sin(A(n - 2<p'»)

+ b(2)' sin2 <P cos(A(n - 2<p')(1- ),2) + cos(A(n - 2<p')) cos' <p] + N 2,b"
)'A' sin' <P cos().(n - 2<p')

+ N 12 b(2 )A[sin(A(n - 2<p') sin <P cos <P - b(2) sin2 <P cos(A(n - 2'P'»)()' + I)]

+ N 21 b(') i.[sin(A(n - 2<p')) sin <P cos <P + b(2) sin' <P cos(A(n - 2<p'»)(1- I,)]

- N I2 b(2 )),[ -cos(i.(n- 2<p')) sin <P cos <P _b,21 sin2 <P sin(A(n - 2<p'»)(I. + I)]

+ N 21 b(2) A[ -cos(),(n - 2<p'» sin <p cos <p + b(2) sin2 <p sin(A(n - 2<p'»(1- I.)]}

Q(2,2) = ( - b(2)' sin2 <p - cos' <p) - I {NI Ib (2
)'),' sin' 'P cos(A(n - 2<p'»)

- Nd - 2b(2) Asin <p cos <p sin().(n - 2<p'))

+ b(2)' sin' <p cos(i,(n - 2<p'»)( I - ),2) + cos(A(n - 2<p'» cos' <p]

+ N 12 b(2) A[ - sin(A(n - 2<p') sin <p cos <p - b(') sin2 <p cos(A(n - 2<p'))(A + I)]

+ N 21 b(2) A[ - sin(A(n - 2<p')) sin <p cos <p + b") sin2 <p cos(i.(n - 2<p'»)(1- A)]

- ]I112b(2) ),[cos(A(n - 2<p') sin <p cos <p - b(2) sin' <p sin(J.(n- 2'P'»)(A + I)]

+ N 21 b(2) A[cos(),(n - 2'P') sin 'P cos <p + b(2) sin2'P sin(A(n - 2'P'»)(1- A)]}

(B-1)

(B-2)
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Q(l,2) = ( - rI(2)' sin' 'I' -cos2 <p) -, { -N" b(2)'1.[ - cos()(n - 2<p')) sin <p cos <p

- 6(2) sin2 <p sin(A(n - 2<p')) (I + I.)]

- N" 6'21' ),[cos(i.(n - 2<p')) sin <p cos <p - 6'21sin2 <p sin().(71- 2<p')) (I + A)]

+N" 6(2) sin(iJn - 2<p'))[ - cos' <p - 6(2)' sin 2<p(l. + 1)]- N2I 6(2)' A' sin' <p sin(}.(71 - 2<p'))

+ lV" 6'21 COS(A(71 - 2<p')) [ - cos' <p - b(2)' sin' <p(A + I)]} +N21 6(')'A' sin' <p cos().(n - 2<p'))} (B-3)

Q(2, 1) = (- 6(2)' sin2 <p - cos' <p) - I {Nil 1.[ - COS(A(71- 2<p')) sin <p cos <p

+b(2) sin 2 (psin(A(n-2<p'))(i-A)]

+ N" i.[cos(i.(n - 2<p')) sin <p cos <p + b(21 sin 2 <p sin(A(n - 2<p'))( I - A)]

+N" b'2) ).' sin2 <p sin(i.( 71 - 2<p')) - N21 6(2)' sin().(71 - 2<p')) [ - cos2 <p - 6(2)') sin2 <p(A - I)]

+ lV"b(2)),2 sin 2 <p cos(A(n - 2<p')) + IV21 6(2)-' cos(}.(7l- 2<p')) [ - cos2 <p - 6(2)' sin' <p(A - I)]} (B-4)

where

<p' = tan-I (b[2) tan<p) 0 ~ <p' ~ n. (B-5)


